FINAL REPORT SUBMITTED TO
DR. ANN ACHESON
NORTHERN REGION
U.S. DEPARTMENT OF AGRICULTURE
U.S. FOREST SERVICE

COPY

REGARDING:

ESTABLISHMENT OF A LICHEN BIOMONITORING PROGRAM
AND AIR QUALITY BASELINE IN THE ANACONDA-PINTLER
WILDERNESS AREA AND ADJACENT AREAS WEST OF THE
ANACONDA COPPER SMELTER

PREPARED & SUBMITTED

BY

LARRY L. ST.CLAIR, Ph.D.
ASSOCIATE PROFESSOR OF BOTANY AND CURATOR OF
NON-VASCULAR CRYPTOGRAMS
BRIGHAM YOUNG UNIVERSITY
PROVO, UTAH 84602

AND

CLAYTON C. NEWBERRY, RESEARCH ASSOCIATE
DEPARTMENT OF INTEGRATIVE BIOLOGY
UNIVERSITY OF CALIFORNIA, BERKLEY, CALIFORNIA 94720

6 APRIL 1994
INTRODUCTION

PROJECT OBJECTIVES:

1. Identify 10 reference sites along a transect across the wilderness area and adjacent areas west of the Anaconda Copper Smelter.

2. Collect, curate, and identify lichen species from various habitats and substrates at each reference site.

3. Identify 3-5 pollution-sensitive lichen species at each reference site. Collect enough tissue of one sensitive indicator species (approximately 6-10 grams dry weight) from each reference site for elemental analyses. Rare species will not be sampled for analysis, but their distribution will be noted.

4. Determine baseline thallus concentrations of 20 potential pollutant elements (including sulfur, selenium, arsenic, copper, bromine, manganese, lead, vanadium, potassium, iron, etc.), using replicate samples of one documented pollution-sensitive species collected at each reference site. Samples will be analyzed using Proton Induced X-ray Emission (PIXE) techniques.

5. Prepare and submit a draft report by 31 May 1993.

LICHENS AS BIOLOGICAL INDICATORS OF AIR QUALITY:

Protocol for using lichens as bioindicators of air quality is well-documented (Fields & St.Claire 1984; St.Claire 1989; Richardson 1992). Hale (1983) noted that lichens have been used in three basic ways to monitor the effects of air pollution on biological systems: 1) elemental analysis of lichen tissues, 2) mapping of all (or selected) lichen species found in areas adjacent to pollution sources, and 3) transplant studies. Currently, the most common approach involves a floristic survey along with elemental analyses of tissues from sensitive indicator species (St.Claire 1989; Wetmore 1989).
As lichens accumulate many different pollutants from atmospheric outwash, lichen tissues provide a record of the kinds and relative quantities of air pollutants in any particular airshed (Schutte 1977; Wetmore 1989; Rope & Pearson 1990). Pollutant accumulation patterns for specific elements have been monitored over time by correlating thallus growth rates and pollutant concentrations in excised portions of lichen thalli (Lawry & Hale 1981). Changes in lichen physiological processes indicate pollution-related damage long before other, more easily detectable changes in thallus color, morphology, or community structure become apparent (Fields & St.Clair 1984).

Lists of pollution-sensitive lichen species have commonly been published in conjunction with floristic and ecological surveys (Rushforth et al. 1982; Wetmore 1989). As certain lichen species are inherently more sensitive to airborne contaminants, air quality can be effectively monitored by occasionally reevaluating lichen community and/or physiological parameters. Pollution-related changes can then be documented by comparing follow-up data to original baseline data.

GENERAL HABITAT DESCRIPTION FOR THE ANACONDA-PINTLER WILDERNESS AREA:

The Anaconda-Pintler Wilderness area is part of the Anaconda-Pintler wildland complex. The complex includes 367,745 acres, with 157,874 acres actually comprising the Anaconda-Pintler Wilderness Area. The continental divide runs the length of the wilderness with the wilderness defining the eastern and southern boundaries of the Sapphire block. Most of the Anaconda Range, and portions of the Pintlar and Sapphire mountain ranges fall within the boundaries of the wilderness. The mountains of the wilderness consist mainly of tightly folded sedimentary formations of all ages from Precambrian through Cretaceous. Over time these formations have been pushed east along several major thrust faults to their present location. Large masses of granitic magma intruded all three ranges, and crystalized to form massive intrusions. Most of the granitic intrusions lie along the thrust faults; however, since the faults have not broken the granite it seems logical that the faults have not moved since the magma crystalized. The mountainous core of the wilderness has been heavily glaciated as evidenced by the many cirques containing alpine lakes, the U-shaped valleys covered by conifer forests, and the extensive and abundant glacial moraines.
The major vascular plant communities in the wilderness include alpine tundra and krummholz in the higher elevations, subalpine meadows around glacial lakes, and extensive coniferous forests downslope, including remnants of old-growth forest in the lower valleys. Riparian communities are well developed along the many streams which drain the upper reaches of the wilderness.

LICHEN BIOMONITORING REFERENCE SITES IN THE ANACONDA-PINTLER WILDERNESS AREA:

A total of 10 reference sites were established either in the wilderness area proper, or on adjacent Forest Service land, or on private property (figures 1 & 2). More specifically, reference sites were established: 1) along the East Fork of the Bitterroot River (25 July 1992); 2) along McCart Trail (25 July 1992); 3) along Pintler Creek beginning at trailhead #37 (27 July 1992); 4) in the Mt Haggin Wildlife Management Area, along Forest Service road #2483 (28 July 1992); 5) at Ten Mile Creek, along Forest Service road #2483 (28 July 1992); 6) in the Mt. Haggin Wildlife Management Area, at Cabbage Gulch 3 miles south of SR #1 on SR #274 (28 July 1992); 7) at a basalt dike above SR #274, 7.2 miles west of SR #1, on private property (28 July 1992); 8) along the trail to Fourmile Basin Lakes (29 July 1992); 9) Goat Flats (30 July 1992); and 10) along the Middle Fork of Rock Creek, beginning at trailhead #9, along trail #28 (31 July 1992). A transect of reference sites (consisting of sites 4-10) was established in the eastern portion of the wilderness as well as on adjacent, non-wilderness Forest Service land east of the wilderness area. Data from this transect will be used to assess the impact of the Anaconda copper Smelter on lichen communities; and as a baseline for documenting recovery of lichen communities. Appendix A contains a list of the pollution sensitive indicator species by reference site.

METHODS

COLLECTION, CURATION, IDENTIFICATION, AND DEPOSITION OF LICHEN SPECIES:

Because lichen distribution is directly influenced by substrate, moisture and sunlight, all available substrates and habitats at each reference site were carefully examined. Small amounts of each lichen species were either removed directly from the substrate, or
depending on the species, with a small piece of the substrate (bark, wood, soil, or rock).

All specimens were placed in carefully labeled paper sacks and taken back to the BYU Herbarium of Nonvascular Cryptograms, where they were curated, identified, placed in permanent herbarium packets, and labeled with the current epithets and authors' names as well as detailed information about the collection site, habitat, and substrate. Herbarium numbers (BRY C-) were also assigned.

Species were identified using standard lichen keys and taxonomic treatises. Standard chemical spot tests and, where necessary, thin-layer chromatography techniques were used to finalize species identifications.

One set of specimens collected from each reference site will be permanently housed at the BYU Herbarium of Nonvascular Plants in Provo, Utah. A second set of voucher specimens will be sent to any herbarium designated by the Forest Service.

COLLECTION OF LICHEN THALLI FOR LABORATORY ANALYSES:

After careful consideration of species abundance, substrate, growth form, documented/suspected pollution sensitivity and general distribution patterns of the lichens at each reference site, one species was designated as the sensitive, indicator species and used for all laboratory chemical analyses.

At each reference site sufficient material of at least one sensitive, indicator species was collected for laboratory analyses (6-10 grams dry weight). All lichen material collected for elemental analyses was placed in Hubco cloth bags (to avoid contamination) and transported back to the BYU Herbarium of Nonvascular Cryptograms. Excess material is permanently stored in Hubco cloth bags in the elemental analysis collection at the BYU Herbarium for Nonvascular Cryptograms. This material is available for additional testing upon request.

DETERMINATION OF ELEMENTAL CONCENTRATIONS IN LICHEN TISSUES:

In the laboratory, surface debris and dust were removed from all samples. Clean, two gram samples of one indicator species from each reference site were delivered to the Elemental Analysis Laboratory at Brigham Young University.

Samples were prepared for PIXE analysis using the methods of Duflou et al. (1987). Lichen samples were placed in Teflon
containers with a teflon coated steel ball, cooled to liquid nitrogen temperature, powdered by brittle fracture using a Braun Mikro-Dismemberator II, and then dried in an Imperial IV Microprocessor Oven for 14 hours at 80°C. Subsamples weighing 150 mg were then weighed into teflon containers and spiked with 1 ml of a 360 ppm yttrium solution. The samples were then oven dried again for 14 hours at 80°C. Samples were then homogenized again using the micro-dismemberator. Approximately 1 mg of the powdered lichen was then carefully weighed onto a thin polycarbonate film in an area of 0.5 cm². A 1.5% solution of polystyrene in toluene was used to secure the sample to the film.

Samples were analyzed using a 2 MV Van de Graaff accelerator with a 2.28 MeV proton beam which passed through a 1.1 mg/cm² pyrolytic graphite diffuser foil. The proton beam was collimated to irradiate an area of 0.38 cm² on the sample. Typically, 10-100 nA proton beam currents were used. X-rays were detected using a Tracor x-ray spectrometer, model TX-3/48-206, with a 10 mm² by 3 mm thick Si(Li) detector positioned at 90° to the proton beam. Samples were analyzed twice using different X-ray absorbers between the samples and the detector. One was a 49 mg/cm² Mylar absorber with a 0.27 mm² pinhole (2.8% of detector area). The Mylar was backed with 8.5 mg/cm² beryllium foil. A 98 mg/cm² Mylar absorber was also used.

To insure adequate quality control, samples of NIST SRM 1571, orchard leaves, and other standards were also prepared and analyzed using the same procedures.

RESULTS AND RECOMMENDATIONS

LICHEN MATERIAL COLLECTED FOR ELEMENTAL ANALYSES:

A total of 10 samples including 4 species from 4 substrates were collected for elemental analyses. Analyses of one species from each reference site were performed using Proton Induced X-Ray Emission (PIXE) technology. Below is a list of the elemental analysis samples by sample number, species, substrate, and collection site (the first number represents the storage drawer and the second number indicates the bag number). All specimens are stored in Hubco cloth bags in the elemental analysis collection at the Herbarium of Nonvascular Cryptograms at Brigham Young University.
<table>
<thead>
<tr>
<th>Sample#</th>
<th>Taxa</th>
<th>Substrate</th>
<th>Collection Site</th>
</tr>
</thead>
<tbody>
<tr>
<td>20-162</td>
<td>Letharia vulpina</td>
<td>Bark</td>
<td>McCart Trail</td>
</tr>
<tr>
<td>20-163</td>
<td>Letharia vulpina</td>
<td>Bark</td>
<td>E. Fk Bitterroot River</td>
</tr>
<tr>
<td>20-164</td>
<td>Letharia vulpina</td>
<td>Lignum</td>
<td>Pintler Creek</td>
</tr>
<tr>
<td>20-165</td>
<td>Umbilicaria vellea</td>
<td>Rock</td>
<td>Pintler Creek</td>
</tr>
<tr>
<td>21-166</td>
<td>Rhizoplaca melanophthalma</td>
<td>Rock</td>
<td>7 miles East of smelter</td>
</tr>
<tr>
<td>21-167</td>
<td>Letharia vulpina</td>
<td>Bark</td>
<td>Fourmile Basin</td>
</tr>
<tr>
<td>21-168</td>
<td>Rhizoplaca melanophthalma</td>
<td>Rock</td>
<td>Fourmile Basin</td>
</tr>
<tr>
<td>21-169</td>
<td>Cetraria nivalis</td>
<td>Soil</td>
<td>Goat Flat</td>
</tr>
<tr>
<td>21-170</td>
<td>Letharia vulpina</td>
<td>Bark</td>
<td>Tr. to Goat Flat</td>
</tr>
<tr>
<td>21-171</td>
<td>Letharia vulpina</td>
<td>Lignum</td>
<td>Middle Fk, Rock Ck.</td>
</tr>
</tbody>
</table>

Elemental analyses have been performed for the following samples: 20-162, 20-163, 20-164, 20-165, 21-166, 21-167, 21-168, 21-170, 21-171
CHECKLIST OF LICHEN SPECIES FROM SELECTED SITES IN THE ANACONDA-PINTLER WILDERNESS AREA AND ADJACENT AREAS WEST OF THE ANACONDA COPPER SMELTER, MONTANA

Acarospora chlorophana (Wahlenb. ex Ach.) Massal.
 Growth form: Crustose with effigurate margins
 Substrate: Rock
 Site(s): Goat Flat, Basalt dike (along State Road #274)
 Relative abundance: Rare to locally common
 Pollution sensitivity: Sensitive to sulfur dioxide (Ryan 1990)
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22993, BRY C-23789

Acarospora fuscata (Nyl.) Arnold
 Growth form: Crustose
 Substrate: Rock
 Site(s): McCart Lookout Trail, Pintler Creek Trailhead, Goat Flat, Vicinity of Fourmile Basin Lakes, Basalt dike (along State Road #274)
 Relative abundance: Rare to locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22965, BRY C-22898, BRY C-23062, BRY C-23612, BRY C-23790

Alectoria imshaugii Brodo & D. Hawksw.
 Growth form: Fruticose
 Substrate: Lignum, conifer bark
 Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22818, BRY C-22899, BRY C-23080, BRY C-23081
Alectoria sarmentosa (Ach.) Ach.
Growth form: Fruticose
Substrate: Lignum, Spruce, conifer bark, *Populus tremuloides*
Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Mt. Haggin Wildlife Management Area
Relative abundance: Rare to locally common
Pollution sensitivity: Sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22819
BRY C-22900, BRY C-22901, BRY C-23082, BRY C-23083, BRY C-23084, BRY C-23803, BRY C-23809

Arthonia glebosa Tuck.
Growth form: Crustose
Substrate: Soil
Site(s): Goat Flat
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22994

Aspicilia aquatica Körber
Growth form: Crustose
Substrate: Rock in stream
Site(s): Pintler Creek Trailhead
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22902

Aspicilia calcarea (L.) Mudd
Growth form: Crustose
Substrate: Rock
Site(s): McCart Lookout Trail
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22866
Aspicilia cinerea (L.) Körber
Growth form: Crustose
Substrate: Rock
Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22903, BRY C-23613

Aspicilia desertorum (Krempelh.) Mereschk.
Growth form: Crustose
Substrate: Rock
Site(s): Vicinity of Fourmile Basin Lakes
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23614

Aspicilia reptans (Looman) Wetm.
Growth form: Fruticose (vagrant)
Substrate: Soil
Site(s): Goat Flat
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22995

Bellemerea alpina (Sommerf.) Clauz. & Roux
Growth form: Crustose
Substrate: Rock
Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Common to abundant
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22820, BRY C-23615, BRY C-22904
Bellemerea cinereorufescens (Ach.) Clauz. & Roux

Growth form: Crustose
Substrate: Rock
Site(s): McCart Lookout Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22867, BRY C-22905, BRY C-23616

Bjatora vernalis (L.) Fr.

Growth form: Crustose
Substrate: Detritus, lignum
Site(s): Goat Flat, Along U.S.F.S. Road #2483, Mt. Haggin Wildlife Management Area
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22996, BRY C-23797, BRY C-23804

Bryoria abbreviata (Müll. Arg.) Brodo & DD. Hawksw.

Growth form: Fruticose
Substrate: Conifer bark
Site(s): McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek
Relative abundance: Rare to locally common
Pollution sensitivity: Sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22868, BRY C-22906, BRY C-22907, BRY C-23085, BRY C-23086, BRY C-23087
Bryoria fremontii (Tuck.) Brodo & D. Hawksw.

Growth form: Fruticose
Substrate: Conifer bark, Doug Fir
Site(s): McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22869, BRY C-22908, BRY C-22909, BRY C-22910, BRY C-23088, BRY C-23089, BRY C-23635

Bryoria fuscescens (Gyeln.) Brodo & Hawksw.

Growth form: Fruticose
Substrate: Lignum, conifer bark
Site(s): Pintler Creek Trailhead, Middle Fork of Rock Creek
Relative abundance: Locally common
Pollution sensitivity: Intermediately sensitive to sulfur dioxide (Wetmore 1987)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22911, BRY C-23090, BRY C-23091, BRY C-23092

Caloplaca cerina (Ehrh. ex Hedwig) Th. Fr.

Growth form: Crustose
Substrate: Polypore growing on Quaking Aspen trunk
Site(s): Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Sensitive to intermediately sensitive to sulfur dioxide (Wetmore 1987)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22912

Caloplaca cladodes (Tuck.) Zahlbr.

Growth form: Sub-fruticose
Substrate: Rock
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22997, BRY C-23636
Caloplaca epithallina: Lyng
Growth form: Crustose, obsolete
Substrate: Epiphytic on crustose, saxicolous lichens
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23063, BRY C-23617

Caloplaca fraudans (Th. Fr.) H. Olivier
Growth form: Crustose
Substrate: Rock, polypore growing on Aspen trunk
Site(s): McCart Lookout Trail, Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22870, BRY C-22913

Caloplaca jungermanniae (Vahl) Th. Fr.
Growth form: Crustose
Substrate: Detritus, moss
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22998, BRY C-23637

Caloplaca livida (Hepp) Jatta
Growth form: Crustose
Substrate: Detritus, moss
Site(s): McCart Lookout Trail, Goat Flat
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22871, BRY C-22999
Caloplaca stillicidiorum (Vahl) Lyng
Growth form: Crustose, obsolete
Substrate: Detritus
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23016,
 BRY C-23638

Caloplaca tiroliensis Zahlbr.
Growth form: Crustose, obsolete
Substrate: Detritus
Site(s): Goat Flat
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23017

Candelariella terrigena Räsänen
Growth form: Crustose with effigurate margins
Substrate: Soil
Site(s): Goat Flat
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23018

Candelariella xanthostigma (Ach.) Lettau
Growth form: Crustose
Substrate: Lignum
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22821,
 BRY C-22872
Catapyrenium cinereum (Pers.) Körber
 Growth form: Squamulose
 Substrate: Soil
 Site(s): Goat Flat
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23019

Catapyrenium lachneum (Ach.) R. Sant.
 Growth form: Squamulose
 Substrate: Soil
 Site(s): Goat Flat
 Relative abundance: Rare to locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23020

Cetraria ericetorum Opiz
 Growth form: Foliose
 Substrate: Soil (vagrant)
 Site(s): Goat Flat
 Relative abundance: Locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23021

Cetraria islandica (L.) Ach.
 Growth form: Foliose
 Substrate: Soil (vagrant)
 Site(s): Goat Flat
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23022
Cetraria nivalis (L.) Ach.
- Growth form: Foliose
- Substrate: Soil
- Site(s): Goat Flat
- Relative abundance: Locally common to abundant
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23023

Cladonia chlorophaea (Flörke *ex* Sommerf.) Sprengel
- Growth form: Squamulose with podetia
- Substrate: Decomposing wood, humic soil, lignum, soil
- Site(s): Pintler Creek Trailhead, Middle Fork of Rock Creek, Mt. Haggin Wildlife Management Area
- Relative abundance: Locally common to abundant
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22914, BRY C-23093, BRY C-23805, BRY C-23810

Cladonia coniocraea (Flörke) Spreng.
- Growth form: Squamulose with podetia
- Substrate: Lignum, decomposing wood, humic soil, soil
- Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Ten Mile Creek, along U.S.F.S. Road #2483
- Relative abundance: Locally common
- Pollution sensitivity: Intermediately sensitive to sulfur dioxide (Ryan 1990)
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22822, BRY C-22873, BRY C-22915, BRY C-23094, BRY C-23095, BRY C-23782, BRY C-23798

Cladonia deformis (L.) Hoffm.
- Growth form: Squamulose with podetia
- Substrate: Decomposing wood, humic soil
- Site(s): Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23639, BRY C-23640
Cladonia ecmocyna Leighton
Growth form: Squamulose with podetia
Substrate: Humic soil, conifer duff, soil
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes, Along U.S.F.S. Road #2483
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22823
BRY C-22874, BRY C-22916, BRY C-23096, BRY C-23641,
BRY C-23799, BRY C-23811

Cladonia fimbriata (L.) Fr.
Growth form: Squamulose with podetia
Substrate: Humic soil, decomposing wood, moss over soil
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes, Ten Mile Creek, Along U.S.F.S. Road #2483, Mt. Haggin Wildlife Management Area
Relative abundance: Locally common to abundant
Pollution sensitivity: Sensitive to intermediately sensitive to sulfur dioxide (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22824
BRY C-22875, BRY C-22917, BRY C-23097, BRY C-23642,
BRY C-23643, BRY C-23783, BRY C-23800, BRY C-23806,
BRY C-23812

Cladonia gracilis (L.) Willd.
Growth form: Squamulose with podetia
Substrate: Humic soil
Site(s): McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common
Pollution sensitivity: Intermediately sensitive to sulfur dioxide (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22876
BRY C-22918, BRY C-23098, BRY C-23644, BRY C-23645
Cladonia pocillum (Ach.) O.Rich
- Growth form: Squamulose with podetia
- Substrate: Soil, moss, decomposing wood
- Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23024, BRY C-23646, BRY C-23647, BRY C-23648, BRY C-23649

Cladonia pyxidata (L.) Hoffm.
- Growth form: Squamulose with podetia
- Substrate: Humic soil, moss over soil
- Site(s): Pintler Creek Trailhead, Ten Mile Creek, Vicinity of Fourmile Basin Lakes
- Relative abundance: Locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22919, BRY C-23784, BRY C-23828

Cladonia stricta (Nyl.) Nyl.
- Growth form: Squamulose with podetia
- Substrate: Soil
- Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: This taxon is a new species record for Montana
- Deposition of specimens: BYU Herbarium: BRY C-22920, BRY C-23650
Cladonia sulphurina (Michaux) Fr.
- Growth form: Squamulose with podetia
- Substrate: Decomposing wood, humic soil
- Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
- Relative abundance: Locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22825, BRY C-22877, BRY C-22921, BRY C-23099, BRY C-23651, BRY C-23652, BRY C-23813

Coelocaulon aculeatum (Schreber) Link
- Growth form: Fruticose
- Substrate: Soil (vagrant)
- Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
- Relative abundance: Common to abundant
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23026, BRY C-23653

Collema cristatum (L.) Weber ex Wigg.
- Growth form: Foliose
- Substrate: Rock
- Site(s): Goat Flat
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23025

Cyphellium lucidum (Th. Fr.) Th. Fr.
- Growth form: Crustose
- Substrate: Lignum
- Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23814, BRY C-23829
Cyphellium tigillare (Ach.) Ach.
 Growth form: Crustose
 Substrate: Conifer bark, lignum
 Site(s): Pintler Creek Trailhead
 Relative abundance: Locally common to abundant
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22922
 BRY C-22923, BRY C-22924

Dactylina madreporiformis (Ach.) Tuck.
 Growth form: Fruticose
 Substrate: Soil, detritus
 Site(s): Goat Flat
 Relative abundance: Locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23027

Dermatocarpon luridum (With.) Laundon
 Growth form: Foliose, umbilicate
 Substrate: Rock in stream
 Site(s): Pintler Creek Trailhead
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22925

Dermatocarpon miniatum (L.) Mann
 Growth form: Foliose, umbilicate
 Substrate: Rock
 Site(s): Goat Flat
 Relative abundance: Locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23028
Dermatocarpon reticulatum Magnusson
- Growth form: Foliose
- Substrate: Rock
- Site(s): Goat Flat
- Relative abundance: Locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23029

Dimelaena oreina (Ach.) Norman
- Growth form: Crustose with effigurate margins
- Substrate: Rock
- Site(s): East Fork Bitterroot River Trail
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22826

Diploschistes muscorum (Scop.) R. Sant.
- Growth form: Crustose
- Substrate: Soil
- Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23030, BRY C-23654

Diploschistes scruposus (Schreber) Norman
- Growth form: Crustose
- Substrate: Rock
- Site(s): Pintler Creek Trailhead
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22926
Diplotomma alboatrum (Hoffm.) Flotow
- Growth form: Crustose
- Substrate: Lignum
- Site(s): Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23830

Diplotomma penichrum (Tuck.) Szat.
- Growth form: Crustose
- Substrate: Lignum
- Site(s): Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23831

Endocarpon pulvinatum Th. Fr.
- Growth form: Squamulose
- Substrate: Rock
- Site(s): Goat Flat, Basalt dike (along State Road #274)
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23031, BRY C-23791

Fulgensia bracteata (Hoffm.) Räsanen
- Growth form: Crustose
- Substrate: Soil
- Site(s): Goat Flat
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23032
Hypocenomyce scalaris (Ach. ex Liljeblad) M. Choisy
 Growth form: Foliose
 Substrate: Lignum
 Site(s): Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare to locally common
 Pollution sensitivity: Intermediately sensitive to sulfur dioxide (Ryan 1990)
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23832

Hypogymnia austerodes (Nyl.) Räsänen
 Growth form: Foliose
 Substrate: Conifer bark, detritus, lignum, soil
 Site(s): Pintler Creek Trailhead, Goat Flat, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22927, BRY C-23033, BRY C-23100, BRY C-23101, BRY C-23102, BRY C-23655

Hypogymnia imshaugii Krog
 Growth form: Foliose
 Substrate: Conifer bark, lignum
 Site(s): East fork Bitterroot River Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek
 Relative abundance: Common to abundant
 Pollution sensitivity: Intermediately sensitive to ozone (Ryan 1990)
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22827, BRY C-22928, BRY C-22929, BRY C-22930, BRY C-22931, BRY C-23103, BRY C-23104, BRY C-23105, BRY C-23106
Hypogymnia physodes (L.) Nyl.

- **Growth form:** Foliose
- **Substrate:** Conifer bark, lignum
- **Site(s):** Pintler Creek Trailhead, Middle Fork of Rock Creek
- **Relative abundance:** Locally common
- **Pollution sensitivity:** Intermediately sensitive to sulfur dioxide (Ryan 1990)
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-22932, BRY C-22933, BRY C-23107, BRY C-23108, BRY C-23109

Lecanora argopholis (Ach.) Ach.

- **Growth form:** Crustose
- **Substrate:** Rock
- **Site(s):** East Fork Bitterroot River Trail
- **Relative abundance:** Rare
- **Pollution sensitivity:** Unknown
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-22828

Lecanora cenisia Ach.

- **Growth form:** Crustose
- **Substrate:** Rock
- **Site(s):** East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
- **Relative abundance:** Rare
- **Pollution sensitivity:** Unknown
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-22829, BRY C-22878, BRY C-22934, BRY C-23618

Lecanora epibryon (Ach.) Ach.

- **Growth form:** Crustose
- **Substrate:** Soil
- **Site(s):** Goat Flat
- **Relative abundance:** Rare
- **Pollution sensitivity:** Unknown
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-23034
Lecanora garovaglaii (Körber) Zahlbr.
Growth form: Crustose with effigurate margins
Substrate: Rock
Site(s): Goat Flat
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23035

Lecanora hageni (Ach.) Ach.
Growth form: Crustose, obsolete
Substrate: Polypore growing on Quaking Aspen trunk, detritus, *Populus tremuloides*
Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22935, BRY C-23656, BRY C-23815

Lecanora impudens Degel.
Growth form: Crustose
Substrate: Conifer bark
Site(s): Middle Fork of Rock Creek
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23110, BRY C-23111

Lecanora novomexicana (B. de Lesd.) Zahlbr.
Growth form: Crustose with effigurate margins
Substrate: Rock
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23036, BRY C-23066, BRY C-23619
Lecanora polytropa (Hoffm.) Rabenh.
Growth form: Crustose to obsolete
Substrate: Rock
Site(s): McCart Lookout Trail, Pintler Creek Trailhead, Goat Flat
Middle Fork of Rock Creek, Ten Mile Creek, Basalt dike
(along State Road #274)
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22879
BRY C-22936, BRY C-23064, BRY C-23112, BRY C-23785,
BRY C-23792

Lecanora rupicola (L.) Zahlbr.
Growth form: Crustose
Substrate: Rock
Site(s): Goat Flat, East Fork Bitterroot River Trail, McCart
Lookout Trail, Pintler Creek Trailhead, Vicinity of
Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22830
BRY C-22880, BRY C-22937, BRY C-23037, BRY C-23065,
BRY C-23620

Lecanora saligna (Schrader) Zahlbr.
Growth form: Crustose
Substrate: Lignum
Site(s): Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Intermediately sensitive to sulfur dioxide
(Wetmore 1987)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22938
Lecanora varia (Hoof.) Ach.
- Growth form: Crustose
- Substrate: Lignum, Lodgepole Pine
- Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes, Along U.S.F.S. Road #2483, Mt. Haggin Wildlife Management Area
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22831, BRY C-22939, BRY C-23657, BRY C-23801, BRY C-23807

Lecidea atrobrunnea (Ramond *in* Lam. & DC.) Schaeber
- Growth form: Crustose
- Substrate: Rock
- Site(s): Goat Flat, McCart Lookout Trail, Vicinity of Fourmile Basin Lakes, Ten Mile Creek
- Relative abundance: Common to abundant
- Pollution sensitivity: Unknown
- Comments: This is one of the most common western saxicolous lichens.
- Deposition of specimens: BYU Herbarium: BRY C-22881, BRY C-22941, BRY C-23038, BRY C-23067, BRY C-23621, BRY C-237865

Lecidea auriculata Th. Fr.
- Growth form: Crustose
- Substrate: Rock
- Site(s): Pintler Creek Trailhead
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22940

Lecidea elabens Fr.
- Growth form: Crustose
- Substrate: Lignum
- Site(s): Pintler Creek Trailhead
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22942
Lecidea leucothallina Arnold
Growth form: Crustose
Substrate: Rock
Site(s): Vicinity of Fourmile Basin Lakes
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23622

Lecidea rufofusca (Anzi) Nyl.
Growth form: Crustose
Substrate: Lignum
Site(s): Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22943

Lecidea tessellata Flörke
Growth form: Crustose to obsolete
Substrate: Rock
Site(s): East Fork Bitterroot River Trail, Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22832, BRY C-23068, BRY C-23623

Lecidella euphorea (Flörke) Hertel
Growth form: Crustose
Substrate: Lignum
Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22944, BRY C-23658
Lecidoma demissum (Rutstr.) G. Schneider & Hertel
- Growth form: Crustose
- Substrate: Moss, soil
- Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22945, BRY C-23659

Leproloma vouauxii (Hue) Laundon
- Growth form: Crustose/leprose
- Substrate: Moss over rock
- Site(s): East Fork Bitterroot River Trail
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22833

Leptochidium albociliatum (Desmaz.) M. Choisy
- Growth form: Minutely foliose
- Substrate: Moss over rock
- Site(s): East Fork Bitterroot River Trail
- Relative abundance: Rare to locally common
- Pollution sensitivity: Sensitive to intermediately sensitive to ozone (Ryan 1990)
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22834

Leptogium californicum Tuck.
- Growth form: Foliose
- Substrate: Moss on rock
- Site(s): East Fork Bitterroot River Trail
- Relative abundance: Rare
- Pollution sensitivity: Sensitive to intermediately sensitive to ozone (Ryan 1990)
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-22835
Letharia columbiana (Nutt.) Thomson

Growth form: Fruticose
Substrate: Conifer bark, lignum, Spruce, *Populus tremuloides*
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Intermediately sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22836
BRY C-22882, BRY C-22946, BRY C-22947, BRY C-23660, BRY C-23661, BRY C-23816

Letharia vulpina (L.) Hue

Growth form: Fruticose
Substrate: Conifer bark, lignum, decomposing wood, Lodgepole Pine, Doug Fir, *Populus tremuloides*
Site(s): Goat Flat, East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common to abundant
Pollution sensitivity: Intermediately sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22837
BRY C-22883, BRY C-22948, BRY C-22949, BRY C-22950
BRY C-22951, BRY C-22981, BRY C-22983, BRY C-23113,
BRY C-23114, BRY C-23115, BRY C-23662, BRY C-23663,
BRY C-23664, BRY C-23817

Megaspora verrucosa (Ach.) Hafellner & V.Wirth

Growth form: Crustose
Substrate: Soil, detritus, lignum
Site(s): Goat Flat
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23039
Melanelia albertana (Ahti) Essl.
 Growth form: Foliose
 Substrate: Moss over granite
 Site(s): East Fork Bitterroot River Trail
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: This taxon is a new species record for Montana
 Deposition of specimens: BYU Herbarium: BRY C-22838

Melanelia granulosa (Lynge) Essl.
 Growth form: Foliose
 Substrate: Rock
 Site(s): Pintler Creek Trailhead
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22952

Melanelia substygia (Räsanen) Essl.
 Growth form: Foliose
 Substrate: Rock
 Site(s): Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare to locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23624

Micarea assimilata (Nyl.)
 Growth form: Crustose
 Substrate: Moss over soil, soil, detritus
 Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare to locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22953, BRY C-23665
Mycobilimbia berengeriana (Massal.) Hafellner & V. Wirth
Growth form: Crustose
Substrate: Humic soil
Site(s): Middle Fork of Rock Creek
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23116

Nephroma parile (Ach.) Ach.
Growth form: Foliose
Substrate: Moss over rock, rock
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22839
BRY C-22884

Ochrolechia androgyna (Hoffm.) Arnold
Growth form: Crustose
Substrate: Lignum, conifer bark, Spruce
Site(s): East Fork Bitterroot River Trail, Pintl Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes, Mt. Haggin Wildlife Management Area
Relative abundance: Rare to locally common
Pollution sensitivity: Sensitive to sulfur dioxide (Wetmore 1987)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22840
BRY C-22954, BRY C-23117, BRY C-23666, BRY C-23808,
BRY C-23825, BRY C-23833

Ochrolechia upsaliensis (L.) Massal.
Growth form: Crustose
Substrate: Soil, detritus, moss over soil
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23041,
BRY C-23667
Pannaria conoplea (Ach.) Bory
Growth form: Squamulose
Substrate: Soil, moss over soil
Site(s): Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: This taxon is a new species record for Montana
Deposition of specimens: BYU Herbarium: BRY C-23673,
BRY C-23674

Pannaria pezizoides (Weber) Trevisan
Growth form: Squamulose
Substrate: Moss
Site(s): Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23675

Parmelia saxatilis (L.) Ach.
Growth form: Foliose
Substrate: Rock
Site(s): East Fork Bitterroot River Trail, Vicinity of Fourmile Basin Lakes, Pintler Creek Trailhead
Relative abundance: Rare to locally common
Pollution sensitivity: Intermediately sensitive to sulfur dioxide; sensitive to fluoride (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22841,
BRY C-23625, BRY C-23818
Parmelia sulcata (L.) Leuch.
Growth form: Foliose
Substrate: Rock, decomposing wood, conifer bark
Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek
Relative abundance: Rare to locally common
Pollution sensitivity: Sensitive to intermediately sensitive to ozone; intermediately sensitive to sulfur dioxide; sensitive to fluoride (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22842, BRY C-22955, BRY C-22956, BRY C-22984, BRY C-22985, BRY C-23118, BRY C-23119

Parmeliopsis ambiguus (Wulfen in Jacq.) Nyl.
Growth form: Foliose
Substrate: Lignum, Doug Fir, conifer bark
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes, Pintler Creek Trailhead
Relative abundance: Common to abundant
Pollution sensitivity: Intermediately sensitive to sulfur dioxide (Wetmore 1987);
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22843, BRY C-22885, BRY C-22986, BRY C-23120, BRY C-23121, BRY C-23669, BRY C-23819

Parmeliopsis hyperopta (Ach.) Arnold
Growth form: Foliose
Substrate: Lignum, Spruce
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes, Pintler Creek Trailhead
Relative abundance: Rare to locally common
Pollution sensitivity: Intermediately sensitive to sulfur dioxide (Wetmore 1987)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22844, BRY C-22886, BRY C-23122, BRY C-23668, BRY C-23820
Peltigera aphthosa (L.) Willd.

Growth form: Foliose
Substrate: Humic soil, moss
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22845, BRY C-22887, BRY C-22957, BRY C-23123, BRY C-23670, BRY C-23821

Peltigera canina (L.) Willd.

Growth form: Foliose
Substrate: Soil, decomposing wood, moss over rock
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common
Pollution sensitivity: Sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22846, BRY C-22888, BRY C-22958, BRY C-23124, BRY C-23671, BRY C-23672, BRY C-23822

Peltigera collina (Ach.) Schrader

Growth form: Foliose
Substrate: Rock
Site(s): East Fork Bitterroot River Trail
Relative abundance: Rare
Pollution sensitivity: Sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22847
Peltigera malacea (Ach.) Funck
 Growth form: Foliose
 Substrate: Soil
 Site(s): Vicinity of Fourmile Basin Lakes, Pintler Creek Trailhead
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23676, BRY C-23823

Peltigera rufescens (Weis) Humb.
 Growth form: Foliose
 Substrate: Soil
 Site(s): Pintler Creek Trailhead, Goat Flat
 Relative abundance: Rare
 Pollution sensitivity: Sensitive to intermediately sensitive to ozone (Ryan 1990)
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22959, BRY C-23040

Peltigera venosa (L.) Hoffm.
 Growth form: Foliose
 Substrate: Soil, moss
 Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Goat Flat, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare to locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22848, BRY C-22960, BRY C-23042, BRY C-23125, BRY C-23677, BRY C-23824
Phaeophyscia decolor (Kashi.) Essl.
Growth form: Foliose
Substrate: Rocks in stream
Site(s): Vicinity of Ten Mile Creek (along F.S. Road # 2483)
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23787

Phaeophyscia endococcina (Körber) Moberg
Growth form: Foliose
Substrate: Rock, conifer bark
Site(s): Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22961, BRY C-22962, BRY C-23787

Phaeophyscia orbicularis (Necker) Moberg
Growth form: Foliose
Substrate: Rock
Site(s): East Fork Bitterroot River Trail
Relative abundance: Locally common
Pollution sensitivity: Sensitive to ozone; Intermediately sensitive to sulfur dioxide; sensitive to fluoride (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22849

Phaeophyscia rubropulchra (Degel.) Moberg
Growth form: Foliose
Substrate: On Parmelia saxatilis over rock
Site(s): East Fork Bitterroot River Trail
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: This taxon is a new species record for Montana
Deposition of specimens: BYU Herbarium: BRY C-22850
Phaeorrhiza nimbosa (Fr.) Mayrh. & Poelt
Growth form: Crustose-squamulose
Substrate: Soil, detritus
Site(s): Goat Flat
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23043

Physcia biziana (Massal.) Zahlbr.
Growth form: Foliose
Substrate: Rock
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22851
 BRY C-22889

Physcia caesia (Hoffm.) Fürnir.
Growth form: Foliose
Substrate: Rock
Site(s): Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare
Pollution sensitivity: Intermediately sensitive to sulfur dioxide (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22963,
 BRY C-23626

Physcia dubia (Hoffm.) Lettau
Growth form: Foliose
Substrate: Rock
Site(s): Basalt dike (along State Road #274)
Relative abundance: Rare
Pollution sensitivity: Sensitive to intermediately sensitive to fluoride (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23793
Physcia phaea (Tuck.) Thomson
Growth form: Foliose
Substrate: Rock
Site(s): Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22964

Physconia detersa (Nyl.) Poelt
Growth form: Foliose
Substrate: Rock
Site(s): East Fork Bitterroot River Trail
Relative abundance: Rare
Pollution sensitivity: Sensitive to intermediately sensitive to sulfur dioxide (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22852

Physconia muscigena (Ach.) Poelt
Growth form: Foliose
Substrate: Soil, rock, moss
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23044, BRY C-23678, BRY C-23679, BRY C-23680, BRY C-23781

Physconia perisidiosa (Erichsen) Moberg
Growth form: Foliose
Substrate: Moss over rock
Site(s): East Fork Bitterroot River Trail
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22853
Platismatia glauca (L.) Culb. & C. Culb.
Growth form: Foliose
Substrate: Decomposing wood, lignum, conifer bark
Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Middle Fork of Rock Creek
Relative abundance: Rare
Pollution sensitivity: Sensitive to ozone; intermediately sensitive to sulfur dioxide (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22855
BRY C-22965, BRY C-22987, BRY C-23126, BRY C-23127, BRY C-23128

Porpidia macrocarpa (DC. in Lam. & DC.) Hertel & Schwab
Growth form: Crustose
Substrate: Rock
Site(s): McCart Lookout Trail
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22890

Protoparmelia badia (Hoffm.) Hafellner
Growth form: Crustose
Substrate: Rock
Site(s): Goat Flat, East Fork Bitterroot River Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22856
BRY C-22966, BRY C-23069, BRY C-23627

Pseudephebe minuscula (Nyl. ex Arnold) Brodo & D. Hawksw.
Growth form: Fruticose
Substrate: Rock
Site(s): Goat Flat, Pintler Creek Trailhead
Relative abundance: Rare to locally common
Pollution sensitivity: Intermediately sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22967, BRY C-23045
Psudepbebe pubescens (L.) M. Choisy
Growth form: Fruticose
Substrate: Rock
Site(s): Pintler Creek Trailhead, Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Intermediately sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22968, BRY C-23046, BRY C-23628

Psora decipiens (Hedwig) Hoffm.
Growth form: Squamulose
Substrate: Soil
Site(s): Goat Flat
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23047

Psora himalayana (Church. Bab.) Timdal
Growth form: Squamulose
Substrate: Soil
Site(s): Storm Lake Pass, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23048, BRY C-23682

Psora rubriformis (Ach.) Hook.
Growth form: Squamulose
Substrate: Soil
Site(s): Goat Flat
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23049
Psora tuckermanii R. Anderson ex Timdal
 Growth form: Squamulose
 Substrate: Soil
 Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23050, BRY C-23683

Psoroma hypnorum (Vahl) Gray
 Growth form: Squamulose
 Substrate: Moss over rock, mossy soil
 Site(s): East Fork Bitterroot River Trail, Middle Fork of Rock Creek, Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare to locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22857, BRY C-23129, BRY C-23684, BRY C-23685

Rhizocarpon geographicum (L.) DC.
 Growth form: Crustose
 Substrate: Rock
 Site(s): Vicinity of Fourmile Basin Creek
 Relative abundance: Common to abundant
 Pollution sensitivity: Sensitive to fluoride (Ryan 1990)
 Comments: This is one of the most common western saxicolous lichens.
 Deposition of specimens: BYU Herbarium: BRY C-23629

Rhizocarpon intermediellum Räsänen
 Growth form: Crustose
 Substrate: Rock
 Site(s): Goat Flat
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23051
Rhizoplaca chrysoleuca (Sm.) Zopf
Growth form: Foliose, umbilicate
Substrate: Rock
Site(s): McCart Lookout Trail
Relative abundance: Locally common
Pollution sensitivity: Sensitive to sulfur dioxide, nitrous oxides, and PAN (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22891

Rhizoplaca melanophthalma (DC. *in* Lam. & DC.) Leuck. & Poelt
Growth form: Foliose, umbilicate
Substrate: Rock
Site(s): Goat Flat, East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes, Basalt dike (along State Road #274)
Relative abundance: Rare to locally common
Pollution sensitivity: Sensitive to sulfur dioxide (Hale 1982)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22858, BRY C-22892, BRY C-22969, BRY C-23630, BRY C-23794

Rinodina turfacea (Wahlenb.) Körber
Growth form: Crustose
Substrate: Detritus
Site(s): Goat Flat
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23052

Solorina bispora Nyl.
Growth form: Foliose
Substrate: Soil
Site(s): Goat Flat
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23053
Solorina crocea (L.) Ach.
- Growth form: Foliose
- Substrate: Soil
- Site(s): Vicinity of Fourmile Basin Lakes
- Relative abundance: Locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23686

Solorina spongiosa (Ach.) Anzi
- Growth form: Foliose
- Substrate: Moss on wet drip wall
- Site(s): Vicinity of Fourmile Basin Lakes
- Relative abundance: Rare to locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23687

Sporastatia polyspora (Nyl.) Grumm.
- Growth form: Crustose
- Substrate: Rock
- Site(s): Goat Flat
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23054

Sporastatia testudinea (Ach.) Massal.
- Growth form: Crustose
- Substrate: Rock
- Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
- Relative abundance: Common to abundant
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23055, BRY C-23631
Staurothele drupacea (Tuck.) Tuck.
- Growth form: Crustose
- Substrate: Rock
- Site(s): Goat Flat
- Relative abundance: Locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23056

Staurothele fissa (Taylor) Zwackh
- Growth form: Crustose
- Substrate: Rocks in stream
- Site(s): Ten Mile Creek (along F.S. Road #2483)
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23788

Stereocaulon alpinum Laurer ex Funck
- Growth form: Fruticose
- Substrate: Soil
- Site(s): Goat Flat, Middle Fork of Rock Creek
- Relative abundance: Locally common
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23057, BRY C-23130

Tephromela armeniaca (DC.) Hertel & Rambold
- Growth form: Crustose
- Substrate: Rock
- Site(s): Goat Flat
- Relative abundance: Rare
- Pollution sensitivity: Unknown
- Comments: None
- Deposition of specimens: BYU Herbarium: BRY C-23070
Thamnolia subuliformis (Ehrh.) Culb.
Growth form: Fruticose
Substrate: Soil, detritus
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23058, BRY C-23688

Thelomma ocellatum (Körber) Tibell
Growth form: Crustose
Substrate: Lignum
Site(s): Pintler Creek Trailhead
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23826

Toninia caeruleonigricans (Lightf.) Th. Fr.
Growth form: Squamulose
Substrate: Soil
Site(s): Vicinity of Fourmile Basin Lakes
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23689

Trapeliopsis granulosa (Hoffm.) Lumbsch.
Growth form: Crustose
Substrate: Lignum, decomposing wood, humic soil
Site(s): McCart Lookout Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes, Along U.S.F.S. Road #2483
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22893
BRY C-22970, BRY C-22982, BRY C-23690, BRY C-23691, BRY C-23802
Tremolechia atrata (Ach.) Hertel
Growth form: Crustose
Substrate: Rock
Site(s): Vicinity of Fourmile Basin Lakes
Relative abundance: Rare to locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23632

Tuckermannopsis chlorophylla (Willd. in Humb.) Hale
Growth form: Foliose
Substrate: Lignum, conifer bark
Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead,
 Middle Fork of Rock Creek
Relative abundance: Rare
Pollution sensitivity: Sensitive to sulfur dioxide (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22859
 BRY C-22971, BRY C-22972, BRY C-22988, BRY C-22989,
 BRY C-23131, BRY C-23132

Tuckermannopsis merrillii (Du Rietz) Hale
Growth form: Foliose-fruticose
Substrate: Conifer bark, Populus tremuloides
Site(s): McCart Lookout Trail, Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Sensitive to intermediately sensitive to ozone (Ryan 1990)
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22894
 BRY C-22973, BRY C-23827

Tuckermannopsis pinastri (Scop.) Hale
Growth form: Foliose
Substrate: Lignum
Site(s): East Fork Bitterroot River Trail
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22860
 BRY C-22990
Tuckermannopsis platyphylla (Tuck.) Hale
- **Growth form:** Foliose
- **Substrate:** Lignum, conifer bark
- **Site(s):** Pintler Creek Trailhead, Middle Fork of Rock Creek
- **Relative abundance:** Rare to locally common
- **Pollution sensitivity:** Unknown
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-22974, BRY C-22975, BRY C-23133, BRY C-23134

Umbilicaria decussata (Vill.) Zahlbr.
- **Growth form:** Foliose, umbilicate
- **Substrate:** Rock
- **Site(s):** Goat Flat, Basalt dike (along State Road #274)
- **Relative abundance:** Rare to locally common
- **Pollution sensitivity:** Unknown
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-23795

Umbilicaria hyperborea (Ach.) Hoffm.
- **Growth form:** Foliose, umbilicate
- **Substrate:** Rock
- **Site(s):** McCart Lookout Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
- **Relative abundance:** Locally common
- **Pollution sensitivity:** Unknown
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-22895, BRY C-22976, BRY C-23633

Umbilicaria krascheninnikovii (Savacz) Zahlbr.
- **Growth form:** Foliose, umbilicate
- **Substrate:** Rock
- **Site(s):** Goat Flat, Basalt dike (along State Road #274)
- **Relative abundance:** Locally common
- **Pollution sensitivity:** Unknown
- **Comments:** None
- **Deposition of specimens:** BYU Herbarium: BRY C-23059, BRY C-23796
Umbilicaria torrefacta (Lightf.) Schrader
Growth form: Foliose, umbilicate
Substrate: Rock
Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail, Pintler Creek Trailhead
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22861, BRY C-22896, BRY C-22977

Umbilicaria vellea (L.) Ach.
Growth form: Foliose, umbilicate
Substrate: Rock
Site(s): East Fork Bitterroot River Trail, Pintler Creek Trailhead, Vicinity of Fourmile Basin Lakes
Relative abundance: Locally common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22862, BRY C-22978, BRY C-23692

Umbilicaria virginis Schaerer
Growth form: Foliose, umbilicate
Substrate: Rock
Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
Relative abundance: Common
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-23693

Usnea alpina Mot.
Growth form: Fruticose
Substrate: Lignum
Site(s): Pintler Creek Trailhead
Relative abundance: Rare
Pollution sensitivity: Unknown
Comments: None
Deposition of specimens: BYU Herbarium: BRY C-22979
Xanthoparmelia wyomingica (Gyelnik) Hale
 Growth form: Foliose
 Substrate: Soil, rock
 Site(s): Goat Flat, Vicinity of Fourmile Basin Lakes
 Relative abundance: Rare to locally common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-23060,
 BRY C-23694

Xanthoria elegans (Link) Th. Fr.
 Growth form: Minutely fruticose
 Substrate: Rock
 Site(s): Goat Flat, East Fork Bitterroot River Trail,
 Vicinity of Fourmile Basin Lakes
 Relative abundance: Common
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22863
 BRY C-23061, BRY C-23634

Xanthoria fallax (Hepp. in Arnold) Arnold
 Growth form: Foliose
 Substrate: Lignum
 Site(s): East Fork Bitterroot River Trail, McCart Lookout Trail
 Relative abundance: Rare to locally common
 Pollution sensitivity: Sensitive to intermediately sensitive to
 sulfur dioxide; sensitive to nitrous oxides and Pan (Ryan
 1990)
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22864
 BRY C-22897

Xylographa abietina (Pers.) Zahlbr.
 Growth form: Obsolete, endoxylic
 Substrate: Lignum
 Site(s): Pintler Creek Trailhead
 Relative abundance: Rare
 Pollution sensitivity: Unknown
 Comments: None
 Deposition of specimens: BYU Herbarium: BRY C-22980
OBSERVATIONS AND CONCLUSIONS:

1. The lichen flora of the Anaconda-Pintler Wilderness Area is diverse and well developed. From our collections at the five reference sites within the wilderness we have identified a total of 143 species in 65 genera. An addition 18 species and 6 genera, not found in the wilderness area, were collected from the five reference sites established between the eastern boundary of the wilderness and the now defunct Anaconda Copper Smelter. Our collections include four new species records for Montana. All growth forms are well represented; however the flora is dominated by crustose species (41%, 66 species), followed closely by foliose species (35%, 56 species). Fruticose lichens make up 10% of the flora (17 species) while squamulose species comprise 14% of the flora (22 species). Generally, this growth form pattern seems to be typical of the lichen floras of western Montana and the Pacific Northwest.

However, other Intermountain Area lichen floras are more completely dominated by crustose species (48% in the Bridger Wilderness Area, and 50% in the High Uintas Wilderness Area; with foliose species representing only 28% and 29% of the lichen floras of those wildernesses).

In contrast four of the five reference sites east of the wilderness were notably depauperate in lichens, yielding only 21 total species in 13 genera. The only exception to this pattern was the Fourmile Basin Lakes reference site which is located very close to the northeast corner of the wilderness. The lichen flora at this reference site appears to be quite similar to the other reference sites in the wilderness with 70 species in 41 genera.

The growth form pattern of the lichens collected in the four reference sites nearest the smelter was also decidedly different from the general pattern described for the five wilderness reference sites. Again crustose species dominated the flora (43%, 9 species); however, the distribution of the other growth forms departed significantly from the pattern for the wilderness: foliose species (24%, 5 species), fruticose species (4%, 1 species), and squamulose species (29%, 6 species). This pattern (low species diversity and reduced occurrence of foliose and fruticose species) very clearly indicates that during operation of the smelter significant damage was done to the most sensitive components of the lichen flora. This was likely due to three major factors: 1)
toxicity of smelter emissions; 2) extensive removal of appropriate substrates; and 3) general habitat destruction.

2. During this study lichens were collected from 5 basic substrates: rocks, lignum/bark, moss/detritus, soil and the thalli of other lichen species. A total of 61 species (38% of the flora) were collected from various rock substrates. Bark/lignum substrates were second in importance accounting for 36 species (22% of the flora). Twenty five species (16% of the flora) were collected from moss/detritus substrates with 37 species (23% of the flora) from the soil. Finally, 2 species (1% of the flora) occurred as epiphytes on other lichen species. Generally, this substrate pattern is typical for most of the Intermountain Area.

Substrate distribution patterns at the four reference sites closest to the smelter departed significantly from the patterns for other 6 reference sites (five of which were in the wilderness area). The percentage of rock lichens increased significantly (53%, 11 species), while the lichens on all other substrates declined: soil (19%, 4 species), moss/detritus (14%, 3 species), bark/lignum (14%, 3 species), and epiphytes (0 species). Again this shift in substrate patterns also reflects the severe impact of the copper smelter on the lichen flora at the four reference sites closest to the smelter. The general reduction in bark species is most likely related to the lack of mature tree substrates, compounded by the toxicity of smelter generated pollutants.

3. High species diversity as well as abundance of all basic growth forms indicates that the lichen communities within the Anaconda-Pintler Wilderness Area are generally healthy and not impacted by air pollutants. However, some lichen species, which are particularly sensitive to air pollutants, were either rare or absence in the wilderness, suggesting that there might be some residual air pollution impact on the lichen flora. Evaluation of elemental analysis data along with additional sampling within old-growth areas of the wilderness should provide insights on this issue.

4. The abundance of sensitive indicator species at all reference sites in or near the wilderness (East Fork Bitterroot River Trail (20 spp.), McCart Lookout Trail (14 spp.), Middle Fork Rock Creek (18 spp.), Pintler Creek Trail (26 spp.), Fourmile Basin
Lakes (15 spp.), and Goat Flat (6 spp.]) also documents that the lichen flora in the wilderness area is generally healthy and unimpacted by air pollution. However, the small number and poor development of sensitive indicator species at the four reference sites closest to the smelter {basalt dike along SR #274 (3 spp.), Mount Haggin Wildlife Management Area along U.S. Forest Service road #2483 (3 spp.), Ten Mile Creek (2 spp.), and Mount Haggin Wildlife Management Area at Cabbage Gulch (0 spp.)} shows that the area immediately west of the smelter has been severely impacted, but is showing some preliminary signs of recovery.

5. The absence of necrotic and/or bleached thalli from the reference sites in and near the wilderness also suggests that the lichen flora is generally unimpacted.

6. Baseline concentrations of potential pollutant elements were determined by analyzing the tissues of at least one sensitive indicator species from each reference site. Specifically, *Letharia vulpina* (bark), *Umbilicaria vellea* (rock), and *Rhizoplaca melanopthalma* (rock) were analyzed for pollutant accumulation (table 1). Thallus concentrations of most pollutant elements are well within background levels (figure 2). However, concentrations of several of the elements were particularly high at some of the reference sites. Specifically, samples of the saxicolous lichen *Rhizoplaca melanopthalma* collected at a basalt dike 12 km west of the now closed Anaconda Copper Smelter showed high levels of arsenic (58 ppm), nickel (90 ppm) and chromium (26 ppm); and relatively high concentrations of copper (98 ppm) and lead (110 ppm). The high levels of arsenic, lead and copper are inevitably related to wind blown dust from either tailings or contaminated soil in the general area of the smelter. Arsenic, lead and copper data from the reference sites west of the basalt dike show a significant reduction in thallus concentrations (arsenic = 2.2-7 ppm; lead = 4-47 ppm and copper = 6-21 ppm). The high nickel and chromium levels are more difficult to explain. The elevated nickel and chromium concentrations in the *Rhizoplaca melanopthalma* is probably, at least in part, related to the basalt substrate. After consulting with Bill Putnam it also appears that fairly high levels of nickel were found in the flue dust from the smelter. Thus windblown nickel from flue dust likely accounts for much of the elevated
<table>
<thead>
<tr>
<th>Species and Location</th>
<th>Elements (ppm except where indicated)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letharia vulpina, McCart Trail, Sample #162</td>
<td>S% 0.08, Cl 100, K% 0.27, Ca% 0.90, Ti 110, V n.d., Cr n.d.</td>
</tr>
<tr>
<td>Letharia vulpina, East Fork Bitterroot River, Sample #163</td>
<td>S% 0.04, Cl 50, K% 0.22, Ca% 0.23, Ti 36, V n.d., Cr n.d.</td>
</tr>
<tr>
<td>Letharia vulpina, Pintler Creek, Sample #164</td>
<td>S% 0.05, Cl n.d., K% 0.298, Ca% 0.325, Ti 43, V n.d., Cr n.d.</td>
</tr>
<tr>
<td>Umbilicaria vellea, Pintler Creek, Sample #165</td>
<td>S% 0.1, Cl n.d., K% 0.54, Ca% 0.13, Ti 280, V n.d., Cr n.d.</td>
</tr>
<tr>
<td>Rhizoplaca melanophthalma, Basalt dike 12 km west of smelter, Sample #166</td>
<td>S% 0.14, Cl 230, K% 0.44, Ca% 0.93, Ti 430, V n.d., Cr 26</td>
</tr>
<tr>
<td>Letharia vulpina, Four Mile Basin, Sample #167</td>
<td>S% 0.07, Cl 170, K% 0.18, Ca% 0.25, Ti 76, V n.d., Cr n.d.</td>
</tr>
<tr>
<td>Rhizoplaca melanophthalma, Four Mile Basin, Sample #168</td>
<td>S% 0.11, Cl 270, K% 0.44, Ca% 0.82, Ti 540, V n.d., Cr 6.0</td>
</tr>
<tr>
<td>Letharia vulpina, Trail to Goat Flat, Sample #170</td>
<td>S% 0.13, Cl 260, K% 0.27, Ca% 0.22, Ti 149, V n.d., Cr n.d.</td>
</tr>
<tr>
<td>Letharia vulpina, Middle Fork Rock Creek, Sample #171</td>
<td>S% 0.05, Cl 250, K% 0.26, Ca% 0.48, Ti 38, V n.d., Cr n.d.</td>
</tr>
<tr>
<td>Species</td>
<td>Location</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>Letharia vulpina,</td>
<td>McCart Trail, Sample #162</td>
</tr>
<tr>
<td>Letharia vulpina,</td>
<td>East Fork Bitterroot River, Sample #163</td>
</tr>
<tr>
<td>Letharia vulpina,</td>
<td>Pintler Creek, Sample #164</td>
</tr>
<tr>
<td>Umbilicaria vellea,</td>
<td>Pintler Creek, Sample #165</td>
</tr>
<tr>
<td>Rhizoplaca melanophthalma,</td>
<td>Basalt dike 12 km west of smelter, Sample #166</td>
</tr>
<tr>
<td>Letharia vulpina,</td>
<td>Four Mile Basin, Sample #167</td>
</tr>
<tr>
<td>Rhizoplaca melanophthalma,</td>
<td>Four Mile Basin, Sample #168</td>
</tr>
<tr>
<td>Letharia vulpina,</td>
<td>Trail to Goat Flat, Sample #170</td>
</tr>
<tr>
<td>Letharia vulpina,</td>
<td>Middle Fork Rock Creek, Sample #171</td>
</tr>
</tbody>
</table>

Elements (ppm except where indicated)
<table>
<thead>
<tr>
<th>Species</th>
<th>Location</th>
<th>As</th>
<th>Se</th>
<th>Br</th>
<th>Rb</th>
<th>Sr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Letharia vulpina, McCart Trail,</td>
<td>Sample #162</td>
<td>n.d.</td>
<td>n.d.</td>
<td>10</td>
<td>n.d.</td>
<td>14</td>
</tr>
<tr>
<td>Letharia vulpina, East Fork Bitterroot River,</td>
<td>Sample #163</td>
<td>n.d.</td>
<td>n.d.</td>
<td>8.0</td>
<td>2.0</td>
<td>13</td>
</tr>
<tr>
<td>Letharia vulpina, Pintler Creek,</td>
<td>Sample #164</td>
<td>n.d.</td>
<td>n.d.</td>
<td>8.0</td>
<td>10</td>
<td>28</td>
</tr>
<tr>
<td>Umbilicaria vellea, Pintler Creek,</td>
<td>Sample #165</td>
<td>4.0</td>
<td>n.d.</td>
<td>10</td>
<td>25</td>
<td>43</td>
</tr>
<tr>
<td>Rhizoplaca melanophthalma, Basalt dike 12 km west of smelter,</td>
<td>Sample #166</td>
<td>58</td>
<td>n.d.</td>
<td>5.0</td>
<td>15</td>
<td>53</td>
</tr>
<tr>
<td>Letharia vulpina, Four Mile Basin,</td>
<td>Sample #167</td>
<td>2.2</td>
<td>n.d.</td>
<td>10</td>
<td>13</td>
<td>16</td>
</tr>
<tr>
<td>Rhizoplaca melanophthalma, Four Mile Basin,</td>
<td>Sample #168</td>
<td>6.0</td>
<td>n.d.</td>
<td>9.0</td>
<td>33</td>
<td>58</td>
</tr>
<tr>
<td>Letharia vulpina, Trail to Goat Flat,</td>
<td>Sample #170</td>
<td>7.0</td>
<td>n.d.</td>
<td>13</td>
<td>7.0</td>
<td>14</td>
</tr>
<tr>
<td>Letharia vulpina, Middle Fork Rock Creek,</td>
<td>Sample #171</td>
<td>n.d.</td>
<td>n.d.</td>
<td>13</td>
<td>17</td>
<td>13</td>
</tr>
</tbody>
</table>

n.d. = not detectable
Fig. 2 Lichen Biomonitoring Program and Baseline

Elemental Analysis Data
(background and elevated pollutant levels)
Fig. 2 cont. Lichen Biomonitoring Program and Baseline

Elemental Analysis Data
(background and elevated pollutant levels)
Fig. 2 cont. Lichen Biomonitoring Program and Baseline

Elemental Analysis Data
(background and elevated pollutant levels)
nickel concentrations in both the *Rhizoplaca melanophthalma* as well as samples of the corticolous lichen *Letharia vulpina* from Four Mile Basin (1 ppm), Pintler Creek (5.9 ppm), McCart Trail (3.3 ppm) and East Fork of the Bitterroot River (10 ppm). This same pattern for nickel was also observed in the elemental analysis data for the *Letharia vulpina* samples collected at Carlton Lake in the Selway Bitterroot Wilderness Area (8 ppm). Some of the samples also contained moderately high levels of titanium (280-540 ppm) and zinc (160-240 ppm); however, since both of these elements are common components of many soils and rock substrates and are also commonly concentrated by biological systems these values probably represent normal background levels.

7. Careful examination of *Rhizoplaca melanophthalma* thalli collected at the basalt dike showed several significant morphological aberrations that are likely related to the high thallus concentrations of toxic metals. For example, all of the thalli were uncharacteristically small and far lighter in color than unimpacted thalli. Fruiting bodies (apothecia) were also discolored and seemed to have thalline margins that were unusually thick.

RECOMMENDATIONS:

1. Eventually, reference sites should be established in other parts of the wilderness area. This will provide further information about the lichen flora as well as additional baseline information about the status of sensitive indicator species. Particular attention should be paid to old-growth forest areas in and near the wilderness.

2. Generally, re-evaluation of sensitive indicator species should be performed every 5 to 8 years, depending on significant changes in either local or regional air pollution patterns. The development of new air pollution sources in close proximity to the wilderness area would also be a significant factor in determining the timing of followup surveys.

3. Re-evaluation of the lichen flora at existing reference sites is generally unnecessary, unless sensitive indicator species begin to show either high levels of pollutant elements or significant changes in relative abundance.
4. Eventually, the additional sensitive indicator material should be analyzed in order to strengthen the baseline.

5. Regular (at least every 2-3 years) monitoring of the lichen flora in the area between the wilderness boundary and the copper smelter should be done in order to effectively document specific recovery patterns.

6. In order to effectively monitor concentrations of nickel, chromium and arsenic; samples of *Rhizoplaca melanophthalma* from the basalt dike and *Letharia vulpina* from the other reference sites in and near the wilderness area should be analyzed at least every five years.

7. In order to further clarify the accumulation pattern for nickel and chromium in samples of *Rhizoplaca melanophthalma* at the basalt dike site; I also recommend that the basalt substrate be analyzed to determine nickel and chromium concentrations.

BIBLIOGRAPHY

APPENDIX A

LIST OF POLLUTION SENSITIVE INDICATOR SPECIES BY REFERENCE SITE:

Basalt Dike (Along State Road #274):
- Acarospora chlorophana (sensitive to sulfur dioxide)
- Physcia dubia (sensitive to intermediately sensitive to fluoride)
- Rhizoplaca melanophthalma (sensitive to sulfur dioxide)

East Fork Bitterroot River Trail:
- Alectoria sarmentosa (sensitive to ozone)
- Cladonia coniocraea (intermediately sensitive to sulfur dioxide)
Cladonia fimbriata (sensitive to intermediately sensitive to sulfur dioxide)

Hypogymnia imshaugii (intermediately sensitive to ozone)

Leptochidium aibocinatum (sensitive to intermediately sensitive to ozone)

Letharia columbiana (intermediately sensitive to ozone)

Letharia vulpina (intermediately sensitive to ozone)

Ochrolechia androgyna (sensitive to sulfur dioxide)

Parmelia saxatilis (intermediately sensitive to sulfur dioxide; sensitive to fluoride)

Parmelia sulcata (sensitive to intermediately sensitive to ozone; intermediately sensitive to sulfur dioxide; sensitive to fluoride)

Parmeliopsis ambiguua (intermediately sensitive to sulfur dioxide)

Parmeliopsis hyperopta (intermediately sensitive to sulfur dioxide)

Peltigera canina (sensitive to ozone)

Peltigera collina (sensitive to ozone)

Phaeophyscia orbicularis (sensitive to ozone; intermediately sensitive to sulfur dioxide; sensitive to fluoride)

Physconia detersa (sensitive to intermediately sensitive to sulfur dioxide)

Plastimatia glauca (sensitive to ozone; intermediately sensitive to sulfur dioxide)

Rhizoplaca melanophthalma (sensitive to sulfur dioxide)

Tuckermannopsis chlorophylla (sensitive to sulfur dioxide)

Xanthoria fallax (sensitive to intermediately sensitive to sulfur dioxide; sensitive to nitrous oxides and PAN)

Goat Flat:

Acarospora chlorophana (sensitive to sulfur dioxide)

Letharia vulpina (intermediately sensitive to ozone)

Peltigera rufescens (sensitive to intermediately sensitive to ozone)

Pseudephebe minuscula (intermediately sensitive to ozone)

Pseudephebe pubescens (intermediately sensitive to ozone)

Rhizoplaca melanophthalma (sensitive to sulfur dioxide)
McCarty Lookout Trail:

Bryoria abbreviata (sensitive to ozone)
Bryoria fremontii (sensitive to ozone)
Cladonia coniocraea (intermediately sensitive to sulfur dioxide)
Cladonia fimbriata (sensitive to intermediately sensitive to sulfur dioxide)
Cladonia gracilis (intermediately sensitive to sulfur dioxide)
Letharia columbiana (intermediately sensitive to ozone)
Letharia vulpina (intermediately sensitive to ozone)
Parmeliopsis ambiguа (intermediately sensitive to sulfur dioxide)
Parmeliopsis hyperopta (intermediately sensitive to sulfur dioxide)
Peltigera canina (sensitive to ozone)
Rhizoplaca chrysoleuca (sensitive to sulfur dioxide, nitrous oxides, and PAN)
Rhizoplaca melanophthalma (sensitive to sulfur dioxide)
Tuckermannopsis merrillii (sensitive to intermediately sensitive to ozone)
Xanthoria fallax (sensitive to intermediately sensitive to sulfur dioxide; sensitive to nitrous oxides and PAN)

Middle Fork of Rock Creek:

Alectoraria sarmentosa (sensitive to ozone)
Bryoria abbreviata (sensitive to ozone)
Bryoria fremontii (sensitive to ozone)
Bryoria fuscescens (intermediately sensitive to sulfur dioxide)
Cladonia coniocraea (intermediately sensitive to sulfur dioxide)
Cladonia fimbriata (sensitive to intermediately sensitive to sulfur dioxide)
Cladonia gracilis (intermediately sensitive to sulfur dioxide)
Hypogymnia imshaugii (intermediately sensitive to ozone)
Hypogymnia physodes (intermediately sensitive to sulfur dioxide)
Letharia columbiana (intermediately sensitive to ozone)
Letharia vulpina (intermediately sensitive to ozone)
Ochrolechia androgyna (sensitive to sulfur dioxide)
Parmelia sulcata (sensitive to intermediately sensitive to ozone; intermediately sensitive to sulfur dioxide; sensitive to fluoride)
Parmeliopsis ambiguа (intermediately sensitive to sulfur dioxide)
Parmeliopsis hyperopta (intermediately sensitive to sulfur dioxide)
Peltigera canina (sensitive to ozone)
Plastismatia glauca (sensitive to ozone; intermediately sensitive to sulfur dioxide)
Tuckermannopsis chlorophylla (sensitive to sulfur dioxide)

Mt. Haggin Wildlife Management Area:
Alectoria sarmentosa (sensitive to ozone)
Cladonia fimbriata (sensitive to intermediately sensitive to sulfur dioxide)
Ochrolechia androgyna (sensitive to sulfur dioxide)

Pintler Creek Trailhead:
Alectoria sarmentosa (sensitive to ozone)
Bryoria abbreviata (sensitive to ozone)
Bryoria fremontii (sensitive to ozone)
Bryoria fuscescens (intermediately sensitive to sulfur dioxide)
Caloplaca cerina (sensitive to intermediately sensitive to sulfur dioxide)
Cladonia coniocraea (intermediately sensitive to sulfur dioxide)
Cladonia fimbriata (sensitive to intermediately sensitive to sulfur dioxide)
Cladonia gracilis (intermediately sensitive to sulfur dioxide)
Hypogymnia imshaugii (intermediately sensitive to ozone)
Hypogymnia physodes (intermediately sensitive to sulfur dioxide)
Lecanora saligna (intermediately sensitive to sulfur dioxide)
Letharia vulpina (intermediately sensitive to ozone)
Ochrolechia androgyna (sensitive to sulfur dioxide)
Parmelia saxatilis (intermediately sensitive to sulfur dioxide; sensitive to fluoride)
Parmelia sulcata (sensitive to intermediately sensitive to ozone; intermediately sensitive to sulfur dioxide; sensitive to fluoride)
Parmeliopsis ambiguа (intermediately sensitive to sulfur dioxide)
Parmeliopsis hyperopta (intermediately sensitive to sulfur dioxide)
Peltigera canina (sensitive to ozone)
Peltigera rufescens (sensitive to intermediately sensitive to ozone)
Physcia caesia (intermediately sensitive to sulfur dioxide)
Platismatia glauca (sensitive to ozone; intermediately sensitive to sulfur dioxide)
Pseudephebe minuscula (intermediately sensitive to ozone)
Pseudephebe pubescens (intermediately sensitive to ozone)
Rhizoplaca melanophthalma (sensitive to sulfur dioxide)
Tuckermannopsis chlorophylla (sensitive to sulfur dioxide)
Tuckermannopsis merrillii (sensitive to intermediately sensitive to ozone)

Ten Mile Creek (Along U.S.F.S. Road #2483):
Cladonia coniocraea (intermediately sensitive to sulfur dioxide)
Cladonia fimbriata (sensitive to intermediately sensitive to sulfur dioxide)

Vicinity of Fourmile Basin Lakes:
Bryoria fremontii (sensitive to ozone)
Cladonia fimbriata (sensitive to intermediately sensitive to sulfur dioxide)
Cladonia gracilis (intermediately sensitive to sulfur dioxide)
Hypocenomyce scalaris (intermediately sensitive to sulfur dioxide)
Letharia columbiana (intermediately sensitive to ozone)
Letharia vulpina (intermediately sensitive to ozone)
Ochrolechia androgyna (sensitive to sulfur dioxide)
Parmelia saxatilis (intermediately sensitive to sulfur dioxide; sensitive to fluoride)
Parmeliopsis ambigua (intermediately sensitive to sulfur dioxide)
Parmeliopsis hyperopta (intermediately sensitive to sulfur dioxide)
Peltigera canina (sensitive to ozone)
Physcia caesia (intermediately sensitive to sulfur dioxide)
Pseudephebe pubescens (intermediately sensitive to ozone)
Rhizocarpon geographicum (sensitive to fluoride)
Rhizoplaca melanophthalma (sensitive to sulfur dioxide)